当光学遇上纳米技术

点赞:22347 浏览:104119 近期更新时间:2024-02-01 作者:网友分享原创网站原创

现代科学技术的发展越来越强调学科之间的交叉和融合.光学作为物理学中一个古老的分支,与21世纪先进的纳米微加工技术和材料生长技术结合,诞生了超构材料这个新兴交叉学科.

站在这块交叉学科的前沿高地,具备多重身份――南京大学物理学院教授、固体微结构物理国家重点实验室副主任、教育部新世纪人才的刘辉,凭着对科学的热爱和执著,引领我国光学超构材料前沿发展,使之在世界舞放异彩.

神奇的光学超构材料

从人类发明第一台计算机,到我们今天日常使用的笔记本电脑和手机,电子集成技术取得了巨大的成功.相比电子集成技术,光子集成技术却相对落后很多.现在,对光学领域的科学家而言,要面对的基本问题是:未来人们能否成功实现光子集成技术,并将其应用于光子计算呢?为了实现光子集成芯片,科学家提出了各种不同的结构体系,其中光学超构材料是目前国际上研究的热门领域.

“超构材料的基本方法是利用各种纳米结构单元,在小尺寸上实现光子的调控.”而刘辉这几年的研究主要是结合光子集成芯片的国家重大需求和超构材料的国际前沿领域,围绕超构材料光子集成芯片而开展的.

超构材料是科学家通过模拟自然界中的材料,设计并制造出来的一种新型人工微结构材料.由于这种材料的组成单元完全是人为设计的,可以实现许多自然材料所没有的新颖而独特的性质与应用,因此我们将这种材料称为超构材料.超构材料主要应用在对各种波进行调控,比如早期大多集中在声波、微波、和太赫兹波领域,随着波长减小,单元的尺寸越来越小,超构材料的制备越来越困难,特别是光学波段的超构材料,在加工与测量方面面临很多困难与挑战.

科技人才最重要的价值体现在他们的创造价值上,那就是利用掌握的专业知识进行创造性的劳动,提出新的理论和新的解决方法,并转化为新的生产力.在刘辉看来,光学超构材料的未来发展趋势也是如此――发挥本身的优势,与其他领域结合起来,为解决各种具体应用问题提供新的方法和手段.

他提到,目前光学超构材料在生物成像领域有一个很重要的应用――超分辨成像.刘辉谈到,最近几年,科学家利用光学超构材料制造出的超级透镜,可以突破光学成像的衍射极限,分辨出远小于波长尺寸的生物分子,这对分子生物学的发展具有很重要的意义.在光学超构材料的另一个重要的应用领域――光信息计算技术上如果有所突破,将提高计算机的计算速度.科学家提出量子计算机的构想,利用量子力学效应,可以大大提高计算机的处理速度,量子计算机将对未来信息技术的发展产生巨大的飞跃.为了实现量子计算机,有很多不同的结构体系,其中可以利用超构材料光子芯片上实现了控制非门的量子逻辑运算.刘辉说:“这是光学超构材料在量子计算机应用上一个很重要的进展.目前,我自己也正在抓紧时间,从事相关方面的研究.”

不容忽视的耦合作用

正因为超构材料为解决各种具体应用问题提供新的方法和手段,所以激发了很多研究者的兴趣,与其有关的应用也层出不穷,但其基本的研究思路却是非常简单的:将很多小的结构单元组成宏观上连续的介质,通过结构单元的设计控制材料的等效参数,以此来控制材料中光波的传播行为.

根据一般的等效介质模型,结构单元之间的耦合很小,可以被忽略,但在组成超构材料时情况就完全不一样,结构单元之间的耦合作用总是存在的,特别是当单元之间的距离很近的时候,这种耦合作用是不能被忽略的.刘辉说,因为它们会对材料的总体性质产生很大的影响.

那么,如何建立耦合超构材料理论模型?单元之间的耦合效应会给我们带来什么新奇的性质?我们能否在耦合超构材料中找到其他新的应用?这些以前没有考虑甚至被忽视的问题都一一呈现在刘辉眼前.

针对这些问题,这几年刘辉对超构材料中各种耦合效应进行了系统而深入的研究.经过仔细比较自然材料和超构材料,他发现,耦合效应其实在自然材料中是普遍存在的一种性质.

“就像化学中原子之间的轨道耦合会形成复杂的分子,晶体中原子的近邻耦合会形成格波一样,如果我们借用自然材料中一些现有的理论模型,有可能解决超构材料中的各种耦合问题.”科学间也许就存在很多异曲同工之妙,而唯有善于思考的人才能抓住其中的共通之处.

这几年,刘辉按照这个思路,成功地将量子化学的轨道理论和凝聚态物理中格波色散理论用于研究光学超构材料各种耦合效应,发现耦合超构材料的宏观性质可以看作是相互作用结构单元之间“杂化效应”的结果.同时经过系统研究,他还发现耦合超构材料会具有一系列传统无耦合超构材料所没有的新奇而有趣的性质.

根据结构单元之间的耦合作用情况,超构材料被分成:超构分子、超构原子链和超构晶体.随着研究的深入,刘辉的灵感被激发出来,他对这些材料一一进行了相关的理论和实验研究,并取得了很多首创发现,在国内外引起了很大的反响.

刘辉本人因为在耦合超构材料方面的学术贡献,被多个国际光学期刊邀请撰写相关的综述文章,很多国际著名的研究组也对他的研究工作进行了正面的引用和评价.

美国工程院士Rice大学的NaomiJ.Halas教授和PeterNorlander教授是surfaceplaon领域国际知名学者,他们在多篇文章中引用了刘辉的工作,并进行了正面的评价.包括澳大利亚国立大学的YuriKivshar教授,E.Ozbay教授,英国南安普顿大学的N.I.Zheludev教授、台湾大学蔡定平教授、德国爱尔朗根大学E.Shamonina教授、荷兰原子与分子物理研究所的A.Koenderink教授在内的超构材料领域多位国际知名学者都在多篇文章中援引并高度肯定了他的工作和成果.

正是因为有了他们所做的前沿工作,超构材料振单元之间耦合作用所导致的杂化效应正在吸引越来越多的研究者的兴趣,一些新奇现象和性质不断被研究报道,促使产生了普通无耦合超构材料中所没有的应用.基于此,耦合超构材料已经发展称为微纳光子学中的一个重要的分支领域.在实验室模拟天体扭曲光线

对刘辉来说,过去的2013年可圈可点的工作一定非光学超构材料莫属.他们的成果入选了由中国激光杂志社主办、多名国内一流光学专家组成评委会评选的“2013中国光学重要成果”.不仅如此,刘辉还受邀参加几个国际会议并作报告,介绍他们的工作和进展.

早期设计的超构材料的折射率都是均匀分布的,光子在超构材料中都是沿着直线传播.后来,人们将超构材料的设计方法进行推广后发现,如果控制折射率是非均匀分布,可以使光线弯曲传播,由此可以设计出许多有趣的变换光学效应,实现各种新奇的应用,比如电磁隐身衣、光学引力场等.虽然变换光学的理论方法听起来简单可行,但在实际材料中实现起来,却是非常地困难.

具体到光波段变换光学超构材料研究中,刘辉的思路是,通过控制材料的宏观参数来控制波的传播,具体到光学超构材料上,是通过控制材料的折射率,来控制光的传播.在这一前沿领域,刘辉不畏未知的风险,挑战了一项有趣的课题――利用变换光学材料来模拟天体引力场的弯曲时空,实现广义相对论所预言的引力透镜效应.科学的想法很多在存在于理论之中,将之付诸实践需要科学家的实力,更需要勇气,这一挑战在几年前,就有人提出过相关的理论模型,却并没有人在实验室完成过.

这3年来,为了在光波段变换光学的实验技术方面取得突破,刘辉指导学生盛冲尝试了各种制备工艺.通过不断尝试,最终在实验中,他们没有采用结构单元设计,而是采用平面波导来制作变换光学器件,通过光刻胶的旋涂工艺制作厚度变化的波导,以此来控制折射率分布.通过这种技术,他们在一块微小的光子芯片上,实现了折射率具有类似中心引力场分布的变换光学微腔,并终于找到了一种非常有效的方法来实现光波段变换光学器件.值得一提的是,实验结果与理论很好的符合,很好地印证了理论的科学性.

提到这项研究的前景和意义,刘辉告诉记者,与以前的大多数窄带共振光学微腔相比,非共振光学微腔具有宽波段特性,可以捕获较宽的连续波段内的光子,这也发展了光学微腔一种新的功能,可以应用于光子芯片上的宽波段激光器、光电探测、光伏器件等.

现在,他们将这项工作总结成文,发表在《自然―光子学》上,在国际上引起了高度关注,包括《自然》、《科学美国人》杂志、英国《新科学家》杂志、国际著名物理网站Phys.Org等主流的国际科学媒体对此进行了报道,评价他们的工作“第一次精确地在光子器件中模拟爱因斯坦广义相对论引力透镜效应”“第一次在光子芯片上,用简单的实验,精确而漂亮地演绎了爱因斯坦广义相对论所描述的部分思想”“用一种独特的光学结构模拟天体动力学性质”“科学家在实验室模拟天体扭曲光线”.同时,国内专家也给予了密切关注,《物理》杂志为此邀请刘辉撰写封面文章.

科研精神一脉相承

从世界格局来看,高端人才已经成为国家能否处于世界前列的决定性因素,谁能够拥有一批国际级的拔尖人才,谁就能占据科技创新的制高点.

在刘辉还在南京大学物理学院攻读研究生时,导师祝世宁院士学风严谨、工作踏实的精神潜移默化地感染学生时代的他.恩师郑重地告诉他,教育永远是比科研更重要的事情.科研的目的是出成果,教育的目的是培养人才,从长远的角度看,培养人才比出科研成果更重要.如今,已成为南京大学的教师和研究生导师的刘辉认为,需要培养的应该是研究型人才,仅仅上课传授知识是远远不够的,需要通过高水平的科研直接训练学生.

当光学遇上纳米技术参考属性评定
有关论文范文主题研究: 关于量子计算机的论文范文文献 大学生适用: 专科论文、自考论文
相关参考文献下载数量: 72 写作解决问题: 如何写
毕业论文开题报告: 论文模板、论文题目 职称论文适用: 核心期刊、中级职称
所属大学生专业类别: 如何写 论文题目推荐度: 免费选题

恩师的言传身教,让他懂得了如何成为一名优秀教师.因此,他非常重视老师与学生的交流,他认为,经常与学生谈谈自己对光学超构材料现状的认识、未来的发展,可以激发学生对这个研究课题的兴趣.另外,刘辉也会带学生参加国际会议、听学术报告,开阔他们的研究视野,认识这个领域中的一些优秀学者.他鼓励学生多独立思考,并提出自己的想法,并耐心地与他们讨论,指出其中不足,也找出有价值之处.在实验中,学生是主角,他只是在一旁指导和讨论.只有在学生完全不会的情况下,他才动手帮助其完成.刘辉说:“培养学生需要注意的关键问题是,既要不时地督促学生,同时又要有耐心,要给予学生一定的空间,让他们自主的学习和提高.”

除去老师的身份,刘辉把自己定义为是一个“实验工作者”,于他来说,科研创新就是花好几年时间去实现哪些聪明而富洞见的科学家在几十秒钟灵光一现而产生的想法.为此,他不得不耐心地解决各种复杂和繁琐的实验问题.当把所有实验环节都打通了,一项完整的科研创新工作就会水到渠成.而这个过程,需要团队协作,需要耐得住寂寞,经受得住失败的考验.

爱迪生曾经说过,天才是1%的灵感,加上99%的汗水.对这句话,刘辉的感受愈加深刻.“提出想法的过程很快,也许就是灵光一现,但要在实验中做出来,需要漫长而艰苦的努力.”在大多数情况下,刘辉不能很顺利地完成整个实验,常常不得不为解决一个实验环节问题花好几个星期,或者几个月,甚至几年时间.“我有时与学生搭一个测量光路,不得不花一个上午寻找一个合适的螺丝钉,而当我们实验刚刚有眉目的时候,实验室的镀膜仪坏了,我们不得不花好几个月时间联系国外的工程师维修,而在有些情况下,我们有一个实验依据做了半年,发现其中一个技术环节在现有条件下无法实现,因此我们不得不放弃半年多的努力.”

科研创新就是:尝试―失败―思考―再尝试,如此循环,直到最后成功.今年,刘辉有幸获得国家杰出青年基金资助,这为他的科研发展注入了强劲的动力.在这条科研苦旅上,刘辉享受着过程,也品尝着甘甜.